
Package: GFA (via r-universe)
September 17, 2024

Type Package

Title Group Factor Analysis

Version 1.0.5

Date 2023-10-21

Author Eemeli Leppäaho [aut, cre], Seppo Virtanen [aut], Muhammad
Ammad-ud-din [ctb], Suleiman A Khan [ctb], Tommi Suvitaival
[ctb], Inka Saarinen [ctb], Samuel Kaski [ctb]

Maintainer Eemeli Leppäaho <eemeli.leppaaho@gmail.com>

Description Factor analysis implementation for multiple data sources,
i.e., for groups of variables. The whole data analysis pipeline
is provided, including functions and recommendations for data
normalization and model definition, as well as missing value
prediction and model visualization. The model group factor
analysis (GFA) is inferred with Gibbs sampling, and it has been
presented originally by Virtanen et al. (2012), and extended in
Klami et al. (2015) <DOI:10.1109/TNNLS.2014.2376974> and Bunte
et al. (2016) <DOI:10.1093/bioinformatics/btw207>; for details,
see the citation info.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Date/Publication 2023-10-21 09:20:02 UTC

Repository https://eemeii.r-universe.dev

RemoteUrl https://github.com/cran/GFA

RemoteRef HEAD

RemoteSha d83e91adc3194cf8ce6a7b8b0c96185c976b39ab

Contents
GFA-package . 2

1

https://doi.org/10.1109/TNNLS.2014.2376974
https://doi.org/10.1093/bioinformatics/btw207

2 GFA-package

getDefaultOpts . 3
gfa . 4
informativeNoisePrior . 6
normalizeData . 7
reconstruction . 8
robustComponents . 9
sequentialGfaPrediction . 10
undoNormalizeData . 11
visualizeComponents . 11

Index 13

GFA-package Group factor analysis.

Description

GFA does factor analysis for multiple data sets having matched observations, for exploratory or
predictive data analysis.

Details

The posterior distribution of GFA model parameters can be inferred with function gfa, once the
priors have been defined with getDefaultOpts. The priors are widely customizable, with two
recommended setups: (i) dense group-sparse components (default; similar to package CCAGFA
that provides variational Bayesian inference for the same model) and (ii) components interpretable
as biclusters. It is recommended to preprocess the data with function normalizeData. Functions
are provided for predicting missing data, choosing a prior for the residual noise, identifying ro-
bust components and visualizing the inferred model. A simple toy example of the pipeline is
provided as demo(GFApipeline), and a more elaborate one as demo(GFAexample). Finally, the
experiment presented in (Bunte, Leppaaho, Saarinen and Kaski: Sparse group factor analysis for
biclustering of multiple data sources, Bioinformatics, 32(16):2457–2463, 2016) can be replicated
with demo(GFAdream). Most of the computational complexity of the package is related to matrix
operations, which can be parallelized inherently by using e.g. OpenBLAS libraries.

Examples

#Data generation
X <- matrix(rnorm(20*3),20,3) #Latent variables
W <- matrix(rnorm(30*3),30,3) #Projection matrix
Y <- tcrossprod(X,W) + matrix(rnorm(20*30),20,30) #Observations
Y <- sweep(Y, MARGIN=2, runif(30), "+") #Feature means
Y <- list(Y[,1:10], Y[,11:30]) #Data grouping
#Model inference and visualization
norm <- normalizeData(Y, type="center") #Centering
opts <- getDefaultOpts() #Model options
#Fast runs for the demo, default options recommended in general
opts[c("iter.burnin", "iter.max")] <- c(500, 1000)
res <- gfa(norm$train, K=5, opts=opts) #Model inference

getDefaultOpts 3

rec <- reconstruction(res) #Reconstruction
recOrig <- undoNormalizeData(rec, norm) #... to original space
vis <- visualizeComponents(res, Y, norm) #Visualization

getDefaultOpts A function for generating the default priors of GFA model

Description

getDefaultOpts returns the priors of GFA

Usage

getDefaultOpts(bicluster = FALSE)

Arguments

bicluster Use binary sparsity priors in both the data modes? If FALSE (default), the com-
ponents will be dense in the data sources, but group-sparse, i.e., each component
is active in a (potentially different) subset of the data sources. If TRUE, binary
sparsity is inferred for each data sample and feature, resulting in each compo-
nent to be interpretable as a multi-source bicluster.

Details

This function returns options defining the model’s high-level structure (sparsity priors) and the
model’s hyperparameters, defining uninformative priors. We recommend keeping these as provided,
with one exception: if the uninformative prior of the noise residual (tau) seems to result in an
overly complex model (no components become shut down even if the initial K is set high), risking
overfitting, we recommend using function informativeNoisePrior to adjust the priors.

Value

A list with the following model options:

tauGrouped If TRUE (default), data views have separate noise precisions, otherwise each
feature has.

normalLatents If TRUE, X will have a normal prior; if FALSE X, will have a spike-and-slab
prior.

spikeW Sparsity prior of W. "group"=group sparsity, "element"= element-wise sparsity
with shared hyperparameter across views, "shared"= element-wise sparsity with
no grouping.

ARDW ARD prior type for W, determining the scale of the inferred components. "shared"=same
scale for all the data sources, "grouped" (default)= separate scale for each data
source, "element"=separate scale for each feature.

ARDLatent ARD prior type for X: "shared" (default)=shared scale for all the samples, "ele-
ment"=separate scale for each sample.

4 gfa

imputation Missing value imputation type: "Bayesian" (default)=proper Bayesian handling
of missing values. "conservative"=missing values result in smaller parameter
scale, which can be useful if tricky missing value structure causes exaggerated
imputed values with the default setting (which can also be dealt with informative
priors for alpha and beta).

iter.max The total number of Gibbs sampling steps (default 5000).

iter.saved The number of saved posterior samples (default 100).

iter.burnin The number of burn-in samples (default 2500).

init.tau The initial noise precision. High values imply initializing the model with an
adequate number of components. Default 1000.

sampleZ When to start sampling spike and slab parameters (default: Gibbs sample 1).

prior.alpha_0t The shape parameter of tau’s prior (default 10).

prior.beta_0t The rate parameter of tau’s prior (default 10).

prior.alpha_0 The shape parameter of alpha’s prior (default 10).

prior.beta_0 The rate parameter of alpha’s prior (default 01).

prior.alpha_0X The shape parameter of beta’s prior (default 10).

prior.beta_0X The rate parameter of beta’s prior (default 1).

prior.beta Bernoulli prior for the spike-and-slab prior of W (counts for 1s and 0s; default
c(1,1)).

prior.betaX Bernoulli prior for the possible spike-and-slab prior of X (default c(1,1)).

verbose The verbosity level. 0=no printing, 1=moderate printing, 2=maximal printing
(default 1).

convergenceCheck

Check for the convergence of the data reconstruction, based on the Geweke
diagnostic (default FALSE).

save.posterior A list determining which parameters’ posterior samples are saved (default: X,
W and tau).

Examples

#Given pre-specified data collection Y and component number K
opts <- getDefaultOpts(bicluster=FALSE)
opts$normalLatents <- FALSE #Binary sparsity for each sample and data source
Not run: model <- gfa(Y,opts,K)

gfa Gibbs sampling for group factor analysis

Description

gfa returns posterior samples of group factor analysis model.

gfa 5

Usage

gfa(Y, opts, K = NULL, projection = NULL, filename = "")

Arguments

Y Either

1. Data sources with co-occuring samples: a list of data matrices, where Y[[m]]
is a numeric N ×Dm matrix, or

2. Data sources paired in two modes (some data sources share the samples of
the first data source, and some share its features): A list with two elements
structured as 1. The data collections Y[[1]] and Y[[2]] should be connected
by sharing their first data source, i.e. Y[[1]][[1]] should equal the transpose
of Y[[2]][[1]].

NOTE: The data features should have roughly zero mean and unit variance.
If this is not the case, preprocessing with function normalizeData is recom-
mended.

opts List of model options; see function getDefaultOpts.

K The number of components (i.e. latent variables). Recommended to be set some-
what higher than the expected component number, so that the sampler can de-
termine the model complexity by shutting down excessive components. High
values result in high CPU time. Default: half of the minimum of the sample size
and total data dimensionality.

projection Fixed projections. Only intended for sequential prediction use via function
sequentialGfaPrediction. Default: NULL.

filename A string. If provided, will save the sampling chain to this file every 100 itera-
tions. Default "", inducing no saving.

Details

GFA allows factor analysis of multiple data sources (i.e. data sets). The priors of the model can be
set to infer bicluster structure from the data sources; see getDefaultOpts. Missing values (NAs)
are inherently supported. They will not affect the model parameters, but can be predicted with
function reconstruction, based on the observed values of the corresponding sample and feature.
The association of a data source to each component is inferred based on the data. Letting only a
subset of the components to explain a data source results in the posterior identifying relationships
between any subset of the data sources. In the extreme cases, a component can explain relationships
within a single data source only ("structured noise"), or across all the data sources.

Value

A list containing the model parameters - in case of pairing in two modes, each element is a list of
length 2; one element for each mode. For most parameters, the final posterior sample is provided to
aid in initial checks; all the posterior samples should be used for model analysis. The list elements
are:

W The loading matrix (final posterior sample); D ×K matrix.

X The latent variables (final sample); N ×K matrix.

6 informativeNoisePrior

Z The spike-and-slab parameters (final sample); D ×K matrix.

r The probability of slab in Z (final sample).

rz The probability of slab in the spike-and-slab prior of X (final sample).

tau The noise precisions (final sample); D-element vector.

alpha The precisions of the projection weights W (final sample); D ×K matrix.

beta The precisions of the latent variables X (final sample); N ×K matrix.

groups A list denoting which features belong to each data source.

D Data dimensionalities; M-element vector.

K The number of components inferred. May be less than the initial K.

and the following elements:

posterior the posterior samples of, by default, X, W and tau.

cost The likelihood of all the posterior samples.

aic The Akaike information criterion of all the posterior samples.

opts The options used for the GFA model.

conv An estimate of the convergence of the model’s reconstruction based on Geweke
diagnostic. Values significantly above 0.05 imply a non-converged model, and
hence the need for a longer sampling chain.

time The CPU time (in seconds) used to sample the model.

informativeNoisePrior Informative noise residual prior

Description

informativeNoisePrior returns an informative noise prior for GFA, for a given data collection.
The function sets the noise residual parameters such that the expected proportion of variance ex-
plained is for all variables and groups (in contrast to being proportional to their original scale). Rec-
ommended e.g. when the data is ’small n, large p’, and the standard prior from getDefaultOpts
seems to overfit the model by not shutting off any component with high initial K.

Usage

informativeNoisePrior(Y, opts, noiseProportion = 0.5, conf = 1)

Arguments

Y The data. For details, see function gfa.

opts Model options. See function getDefaultOpts for details. If option tauGrouped
is TRUE (default), each data source is given equal importance (feature impor-
tance may vary within each source). If it is FALSE, each feature is given equal
importance.

normalizeData 7

noiseProportion

proportion of total variance to be explained by noise. Suggested to lie between
0.01 and 0.99.

conf Confidence in the prior, relative to confidence in the data. Suggested to lie be-
tween 0.01 and 100.

Value

The input model options (opts) with an updated residual noise prior, corresponding to the elements
prior.alpha_0t and prior.beta_0t.

Examples

#Given data collection Y
opts <- getDefaultOpts()
Not run: opts <- informativeNoisePrior(Y,opts,0.2,1)
Not run: res <- gfa(Y,opts=opts)

normalizeData Normalize data to be used by GFA

Description

normalizeData is used to transform a data collection into a normalized form suitable for GFA. This
function does two things: 1. It centers each variable. GFA assumes zero-mean data, as it models
variances. 2. It normalizes the scales of variables and/or variable groups. Features with higher
variance will affect the model structure more; if this is not desired, the normalization should be done.
In GFA it is additionally possible to normalize the importance of variable groups (data sources), in
addition or instead of individual variables. Finally, the total variance of data is normalized for
numerical reasons. This is particularly important if no other normalization is done. NOTE: the
function assumes continuous-valued data. If some features are e.g. binary with only a small portion
of 1s, we do not recommend centering them.

Usage

normalizeData(train, test = NULL, type = "scaleOverAll")

Arguments

train a training data set. For a detailed description, see parameter Y in gfa.

test a test dataset. Should be provided if sequential prediction is used later.

type Specifies the type of normalization to do. Mean-centering of the features is
performed in all the cases, and option "center" does not perform any scaling.
Option "scaleOverall" (default) uses a single parameter to scale the variance of
the whole data collection to 1, while "scaleSources" scales each data source to
have variance 1. Finally, "scaleFeatures" performs z-normalization, i.e. assigns
the variance of each feature to 1.

8 reconstruction

Value

A list containing the following elements:

train Normalized training data.

test Normalized test data for sequential prediction (if provided as input).

trainMean Feature-wise means of the training data sources.

trainSd Feature-wise/overall standard deviations of the training data sources.

reconstruction Full data reconstruction based on posterior samples

Description

reconstruction returns the full data reconstruction based on given posterior samples.

Usage

reconstruction(res, average = TRUE)

Arguments

res The sampled model from function gfa

average If TRUE (default), averages the reconstruction over the posterior predictive sam-
ples. If set to FALSE, the output may require a large amount of memory. In case
of large input data, we recommend acquiring the posterior predictive samples
for subsets of data at a time, based on this implementation.

Value

The data reconstruction, a numeric N×
∑M

m=1 Dm matrix, if average is TRUE (default). Otherwise,
the reconstruction is a N×

∑M
m=1 Dm×Npost array, with posterior samples in the third dimension.

If the input data has been paired in two modes, the output will be a list of length 2, one element
corresponding to each mode.

robustComponents 9

robustComponents Robust GFA components

Description

robustComponents analyzes a collection of sampling chains and returns robust components.

Usage

robustComponents(models, corThr = 0.9, matchThr = 0.5)

Arguments

models Either a vector containing the file names, where the models are saved as ’res’, or
a list containing the models.

corThr How close two components are required to be, in terms of correlation, in order
to match them.

matchThr How big proportion of the chains need to contain the component to include it in
the robust components.

Details

The function returns the effects (i.e. reconstructions) of robust components to the data level. It is
useful for a thorough model interpretation, accumulating power over several sampling chains by
comparing them in the observation space (as opposed to the latent space). The function is needed
for this task, as the extreme multi-modality of factor analysis prohibits efficient sampling techniques
that would result in a posterior estimate converging to the true posterior in practice. The function
uses a heuristic correlation-based procedure to analyze which components occur frequently in GFA
sampling chains.

Value

A list with the following elements (when input data are paired in two modes, the returned list is of
length 2, containing the following elements for each mode):

Krobust The number of robust components found with the given thresholds.

effect The component effect in the data space; and array of size N ×
∑M

m=1 Dm ×
Krobust.

indices The corresponding component indices; a length(models) × Krobust matrix.
Negative indices denote the closest component in the corresponding repetition,
having no components above the threshold.

cor The correlations of the components matched to this robust component; a matrix
of size length(models) × Krobust. The correlations are reported relative to
the first repetition with this component observed.

10 sequentialGfaPrediction

Examples

X <- matrix(rnorm(10*2),10,2)
W <- matrix(rnorm(15*2),15,2)
Y <- tcrossprod(X,W) + matrix(rnorm(10*15),10,15)
opts <- getDefaultOpts() #Default options
#Fast runs for the demo, default options recommended in general
opts[c("iter.burnin", "iter.max")] <- c(500, 1000)
res <- list()
for(i in 1:4) res[[i]] <- gfa(list(Y[,1:6],Y[,7:15]),opts=opts,K=3)
rob <- robustComponents(res)

sequentialGfaPrediction

Sequential prediction of new samples from observed data views to un-
observed

Description

sequentialGfaPrediction returns predictions for unobserved data sources of a new set of data
samples.

Usage

sequentialGfaPrediction(Y, model)

Arguments

Y The new data samples, in a similar format as in function gfa

model The sampled model from function gfa, with model$opts$predict being a logical
vector with the length matching the length of Y, describing which data views
will be predicted (TRUE), and which have been observed (FALSE).

Value

A list containing the predictions, with the observed data sources empty. Additionally, sampling
MSE is given as element ’mse’, and likelihood as ’cost’.

undoNormalizeData 11

undoNormalizeData A function for returning predictions into the original data space

Description

undoNormalizeData returns the predictions on normalized data acquired from normalizeData into
the original data space.

Usage

undoNormalizeData(pred, normalization)

Arguments

pred The predictions acquired from reconstruction.

normalization The output list obtained from normalizeData.

Value

The predictions in the original data space.

visualizeComponents Visualize GFA components

Description

visualizeComponents illustrates the factorization inferred by GFA, averaging over the posteriors
of the parameters, if they have been stored.

Usage

visualizeComponents(
model,
Y = NULL,
norm = NULL,
mode = 1,
showAll = TRUE,
hclust = FALSE,
topK = 3,
topFeatures = NA,
topSamples = NA

)

12 visualizeComponents

Arguments

model The learned GFA model.

Y The used input data to be plotted, if supplied. Default NULL.

norm The normalization acquired from normalizeData, if applied. If provided, the
reconstruction is shown in the original data space. Default NULL.

mode Determines which mode to visualize in case of pairing in two modes (default:
1).

showAll Show the full predictions and factorizations? May be cumbersome for large
data. Default TRUE.

hclust Order features and samples based on hierarchical clustering? Default FALSE.

topK Number of strongest components visualized in the data space. Default 3.

topFeatures How many most relevant features to show for the data space visualizations?
Default NA, showing all the features.

topSamples How many most relevant samples to show for the data space visualizations?
Default NA, showing all the samples.

Value

A list containing the matrices that have been visualized.

Index

∗ package
GFA-package, 2

getDefaultOpts, 2, 3, 5, 6
GFA (GFA-package), 2
gfa, 2, 4, 6–8, 10
GFA-package, 2

informativeNoisePrior, 3, 6

normalizeData, 2, 5, 7, 11, 12

reconstruction, 5, 8, 11
robustComponents, 9

sequentialGfaPrediction, 5, 10

undoNormalizeData, 11

visualizeComponents, 11

13

	GFA-package
	getDefaultOpts
	gfa
	informativeNoisePrior
	normalizeData
	reconstruction
	robustComponents
	sequentialGfaPrediction
	undoNormalizeData
	visualizeComponents
	Index

